

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

FAB Mass Spectra of Peptides, Part IX. Formation of $n\text{H}_3\text{PO}_4$ and $n\text{H}_3\text{PO}_4$ 62 Adducts on H_3PO_4 -Spiked Glycerol Matrices

Krzysztof Jankowski^a; Henri Virelizier^b; Pierre Lafontaine^c; J. R. Jocelyn Paré^d

^a F. E. S. R., Université de Moncton, Moncton, Canada ^b S. E. A. I. N., C. E. N. - Saclay, France ^c

Agriculture Canada, P. R. C., Ottawa, ON, Canada ^d Environment Canada, R. R. E. T. C., Ottawa, ON, Canada

To cite this Article Jankowski, Krzysztof , Virelizier, Henri , Lafontaine, Pierre and Paré, J. R. Jocelyn(1991) 'FAB Mass Spectra of Peptides, Part IX. Formation of $n\text{H}_3\text{PO}_4$ and $n\text{H}_3\text{PO}_4$ 62 Adducts on H_3PO_4 -Spiked Glycerol Matrices', Spectroscopy Letters, 24: 1, 35 — 41

To link to this Article: DOI: 10.1080/00387019108018122

URL: <http://dx.doi.org/10.1080/00387019108018122>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

FAB MASS SPECTRA OF PEPTIDES, PART IX. FORMATION
OF $n\text{H}_3\text{PO}_4$ AND $n\text{H}_3\text{PO}_4 + 62$ ADDUCTS ON
 $\cdot\text{H}_3\text{PO}_4$ -SPIKED GLYCEROL MATRICES

Key-words: FAB-MS, Peptides.

Krzysztof Jankowski (1), Henri Virelizier (2), Pierre Lafontaine (3),
and J. R. Jocelyn Paré (4)

1. F. E. S. R., Université de Moncton, Moncton, N.-B., Canada E1A 3E9;
2. S. E. A. I. N., C. E. N. - Saclay, 91191 Gif-sur-Yvette, France;
3. Agriculture Canada, P. R. C., Ottawa, ON, Canada K1A 0C6;
4. Environment Canada, R. R. E. T. C., Ottawa, ON, Canada K1A 0H3.

ABSTRACT

We have studied the behaviour of the brain pentapeptide leucine-enkephalin on phosphoric acid spiked glycerol matrices under FAB-PI conditions. Ion series of the general formula $[mM+n\text{H}_3\text{PO}_4+H]^+$, $[mM+H+62]^+$ and $[mM+\text{H}_3\text{PO}_4+H+62]^+$ were observed. Experiments using labelled glycerol, methionine-enkephalin and various spiking agents were performed along with B/E linked scans in order to investigate the nature of the latter two series of ions; they led to the conclusion that the +62 ions originate from the slow decomposition of H_3PO_4 -peptide aggregates.

INTRODUCTION

As part of our general work on FAB mass spectra of peptides, we reported earlier on the formation and structure of protonated dimer adducts, $[2M + H]^+$, for the brain pentapeptide, leucine-enkephalin¹⁻³, **1**.

1

Several conclusions were drawn from these results, one of which was related to the opportunity for **1** to form helicoidal-like or *beta*-pleated (*beta*-sheet) adducts in order to account for the observed decomposition of the dimer adducts^{2,3}. The protonated dimer $[2M + H]^+$ or trimer $[3M + H]^+$ ions could result from the fragmentations of these polymeric aggregates as well as from the spontaneous di- or trimerisation onto the glycerol matrix of the monomeric peptide **1**. Tetra- or pentameric ions are not detected in the mass spectrum of this compound because of their low intensity at such a high mass range. However, data obtained by varying the concentration of the peptide in glycerol, and the basic characteristics of the solvent (*e.g.* dielectric constant) along with our previous dipeptide results (especially on the formation of mixed dimers under FAB, CI or DCI conditions⁴) strongly support the hypothesis of the formation of higher aggregates from the monomeric **1** onto glycol, glycerol or thioglycerol matrices.

To confirm this hypothesis we have designed a series of experiments aimed at evaluating the affinity displayed by the peptides toward phosphoric acid and toward selected polyamines. The latter was presented in another

TABLE 1

Characteristic Ions and Ion-Types Observed in the FAB Mass Spectra of Leucine-Enkephalin Recorded on a Phosphoric Acid-Spiked Glycerol Matrix

m/z	Ion Type
556, 654, 752, 850, 948, 1046, 1144	$[M + H + nH_3PO_4]^+$; n = 0-6
618, 716, 814	$[M + H + n H_3PO_4 \cdot 2H_2O]^+$; n = 1-3
1112, 1210, 1308	$[2M + H + nH_3PO_4]^+$; n = 0-2
1174, 1272	$[2M + H + nH_3PO_4 \cdot 2H_2O]^+$; n = 1,2

report⁵. These experiments are part of our ongoing investigations aimed at the design of biointeractive matrices for structural work in FAB-MS.

RESULTS AND DISCUSSION

The $[M + H + \text{glycerol}]^+$ as well as the $[2M + H + \text{glycerol}]^+$ adducts have been observed in the spectra of a whole variety of peptides. In the case of 1, $[M + H]^+$, $[2M + H]^+$ as well as $[3M + H]^+$ ions were also detected. When phosphoric acid (H_3PO_4), P, is used to spike a glycerol matrix containing 1, four series of new adduct ions can be observed. They are listed in Table 1.

The amide (peptide) bond-phosphoric acid affinity should justify the formation of [polyphosphate-peptide] or [n(phosphoric acid)-peptide] adduct ions in the first series of ions at m/z 556, 654, ..., 1144. Each amide bond of 1 reacts with P accounting for the addition of the first four phosphoric acid residues (nominal value of 98 each) with a fifth phosphoric acid being fixed

onto the terminal amine. For this particular substance, a sixth phosphoric acid unit is fixed on the phenolic OH group of the tyrosine residue. The addition of $n \times 98$ daltons to the protonated peptide ions is a clear indication of a H-bond between **P** and the peptide rather than a polyphosphate-peptide association.

Another closely related series of ions involving the $[2M + H]^+$ species are also observed at m/z 1112, 1210 and 1308. Furthermore, both original ions, $[M + H]^+$ and $[2M + H]^+$ are followed by significant adduct ions⁷ at $[M + H + 62]^+$ and $[2M + H + 62]^+$ and at $[M + H + 62 + P]^+$ and $[2M + H + 62 + P]^+$. FAB positive ion spectra recorded in glycerol that was spiked with other mineral acids or source of protons than **P** (e.g. HCl, H_2SO_4 , *m*-nitrobenzyl alcohol, phenol) did not contain these artefacts. A possible explanation for the origin of the +62 daltons aggregates is the decomposition of glycerol, *via* hydrogen shift, producing an ethylene glycol adduct. Phosphoric acid appears to play an important role in generating this adduct and it also adds on to the "+62 adduct" ions mentioned above to yield the "+62 + P" aggregates.

In order to test this hypothesis, spectra of **1** were recorded on ethylene glycol and 1-thioglycerol matrices in the presence of phosphoric acid. If the assumption is correct, methanol and either ethylene glycol, 2-mercaptopropanol or a combination of both adducts should be observed, respectively. Ethylene-glycol spectra do not show any methanol adducts ($[M + H + 32]^+$). However, the high volatility of the methanol so-produced could account for its non-detection. The 1-thioglycerol-phosphoric acid spectra of **1** display intense adduct ions at $[M + H + 62]^+$ and $[2M + H + 62]^+$

as well as some **P** adduct to both ions but no $[M+H+78]^+$ and no $[2M+H+78]^+$ ions. Furthermore, the phosphoric acid spiked matrices of polyethylene glycol-300 and 1,3-propanediol do not show any important adducts. If they are matrix-related, it would appear then that the presence of a *vic*-diol system is a prerequisite for the formation of these uncommon adducts.

The use of perdeuterated glycerol (glycerol-d₈), instead of non labelled glycerol leads to the deuteration of peptide (both pseudomolecular ion cluster and +62 dalton adduct ions shifted by +4 daltons at 560 and 622 daltons). Experiments with C-deuterated glycerol (glycerol-d₅) does not confirm these results even after four consecutive reprotonations of the solvent.

Substituting methionine-enkephalin for leucine-enkephalin gives rise to analogous results ($[M+H+62]^+$ at m/z 636). We have tested for other potential +62 dalton unit sources such as copper ions ($CuCl_2$, $CuSO_4$, metallic copper wire), as well as the mixture of sodium and potassium chlorides, but to no avail. In the last case, however, a new series of adduct ions are formed as the result of direct cationization of the peptide (e.g. $[M+alkali]^+$, etc.). Finally, collision experiments on the ion at m/z 618 lead, as expected, to the intense pseudomolecular ion.

The use of concentrated H_3PO_4 alone to spike the glycerol matrix does not allow the observation of the glycerol adduct. The analysis of mixture on a cold tip (liquid nitrogen) revealed only slight amount of the glycol adduct without HCl spiking. The spiked matrix (glycerol+HCl+P) background

spectrum does not show any 618 or 1174 ions in absence of peptide. Furthermore, in all experiments with phosphoric acid spiked matrices, the presence of a doubly charged ion at m/z 609 was observed (see acknowledgments). Thus, it would appear that the +62 aggregates originate from the slow decomposition of H_3PO_4 -peptide adduct ions themselves.

In order to confirm this last hypothesis, we performed a series of B/E linked-scanning experiments on the m/z 654. The data obtained from these B/E spectra showed that this particular ion, namely $[\text{M} + \text{H}_3\text{PO}_4 + \text{H}]^+$, decomposes to $[\text{M} + \text{H}_3\text{PO}_4 + \text{H}-\text{H}_2\text{O}]^+$ and to $[\text{M} + \text{H}]^+$ at m/z 636 and 556, respectively. Similar experiments performed on the ion at m/z 636 yielded a daughter ion at m/z 618 ($[\text{M} + \text{H}_3\text{PO}_4 + \text{H}-2\text{H}_2\text{O}]^+$). Finally, B/E spectra recorded from the ion at m/z 618 showed that the latter had daughter ions at m/z 600 ($[\text{M} + \text{H}_3\text{PO}_4 + \text{H}-3\text{H}_2\text{O}]^+$) and again at m/z 556. These data provide us with the origin of the +62 ions that complicated greatly the original interpretation of the spectra. This behaviour is rather peculiar although it complements the data we reported earlier on polyamines binding⁵.

EXPERIMENTAL

Spectra were obtained on VG-70EQ, Nermag-3010 and Finnigan MAT-312 mass spectrometers using their respective FAB gun and stainless steel and copper tips. Operating conditions included glycerol, thioglycerol or ethylene glycol as support matrix spiked with 2-10% of H_3PO_4 (P) (analytical grade) and research grade xenon gas as atom source. The peptide was suspended in the matrix and subsequently treated with a small amount of diluted H_3PO_4 (ca. 2%) and spiked with HCl (3M). The glycerol-d₈ (DMM 123, C. E. A., Saclay, France) was analysed as 98% pure^{3,6}. The peptides

were obtained commercially from Sigma Chemicals. Copper wire, CuCl₂, CuSO₄, KCl and NaCl were of reagent grade and used as obtained (Fisher).

ACKNOWLEDGMENTS

We are indebted to the Université de Moncton Research Council for a research grant. We acknowledge the suggestions made by Prof. J. M. Beynon about the verification of the presence of a doubly charged ion at m/z 609.

REFERENCES

1. Jankowski, K., Gaudin, D., Virelizier, H., Tabet, J.-C., Rolando, C., and Paré, J. R. J. Fast Atom Bombardment Mass Spectra of Peptides, Part V. *Spectrosc. Int. J.* 1985; **4**: 231-248.
2. Jankowski, K., Gaudin, D., Virelizier, H., and Tabet, J.-C. Fast Atom Bombardment Mass Spectra of Peptides, Part VI. *Int. Symp. Appl. Mass Spectrosc.* 1987, Barcelona, Spain: 134.
3. Jankowski, K., Tabet, J.-C., Gaudin, D., and Virelizier, H. Fast Atom Bombardment Mass Spectra of Peptides: Dimer Studies. *Biomed. Environ. Mass Spectrom.* 1989; **18**: 281-286.
4. Aumelas, A., Fermandjian, S., Virelizier, H., Gaudin, D., and Jankowski, K. FAB-MS Study of N-acetyl-N-methyl Amides of Amino Acids. Use of C-13 Labelling. *Spectros. Int. J.* 1985; **4**: 249-264.
5. Jankowski, K., LeBlanc, J.-F., Lafontaine, P., Laing, R., and Paré, J. R. J. FAB Mass Spectra of Peptides, Part VIII: Multi-Components Interactive Processes. *Adv. Mass Spectrom.* 1989; **11**: 1412-1413.
6. Spectra are available from the authors (KJ) upon request.
7. Both are clearly seen on the large 4-6 daltons cluster background.
8. Jankowski, K., Gaudin, D., Virelizier, H., Hagemann, R., Lam-Tranh, H., and Fermandjian, S. FAB of Peptides Study, Part II: Deuterated Glycerol Matrix and Selectively Deuterated Peptides. *Spectros. Lett.* 1986; **19**: 563-94.

Date Received: 08/14/90
Date Accepted: 09/18/90